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Lab 1 

Measurement of Density 

A. Purpose 

To measure the physical dimensions of an object with a vernier caliper and micrometer 

caliper and to analyze the data with the propagation of uncertainty. 

B. Introduction 

Measurement is an experimental process of obtaining the value of a physical quantity. 

During the process, there are always uncertainties that occur. Therefore, the ability to evaluate 

the uncertainties and keep them to a minimum is important. This experiment focuses on the 

measurement of the density of an object and the techniques of data analysis, where the 

propagation of uncertainties should be considered for we cannot obtain the density directly. 

Uncertainty analysis is the evaluation of uncertainty in measurement. The word uncertainty 

in science does not carry the meanings of the terms mistake or blunder. In contrast, it would 

inevitably occur in all measurements. In general, since we do not know the answer before 

measurements, it is only an estimate of the value of the measurand and thus the stated result 

would be a region instead of a single value. The standard form for reporting a measurement of 

a physical quantity x  is 

best(measured value of  )x x x=                        (1)                     

 where  

best  (best estimate for )

 (an estimate of an uncertainty in the measurement)

x x

x

=

=
 

Note that eq(1) is NOT saying that all the measured values would lie in the range bestx x−  to 

bestx x+  . We cannot state percent confidence in our margins of uncertainty until we 

understand the statistical laws that govern the process of measurement. We will return to 

this point later.  

1. Significant Figures 

 Because the quantity x  is an estimate of uncertainty, it should not be stated with too 

much precision. If we measure the acceleration of gravity g , it is absurd to state a result like 

2(measured ) 9.821 0.02325 m sg =                    (2) 

where four significant figures are stated for the uncertainty. Instead, uncertainties should be 

stated with only one or two significant figures for more precise uncertainty has no meaning. We 

usually choose to state the uncertainties with two significant figures in high-precision work. 
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Thus, if some calculation yields the uncertainty 
20.02325 m sg =  , this answer should be 

rounded up to1 
20.024 m sg = , and (2) should be rewritten as  

2(measured ) 9.821 0.024 m sg =                      (3) 

Once the uncertainty in a measurement has been estimated, the significant figures in the 

measured value must be considered. A statement such as  

measured speed 6051.78 30 m s=                      (4) 

is also incorrect. The best estimate should be rounded so that its last significant figure is in 

the same decimal place as the uncertainty. Therefore, the correct statement is  

measured speed 6052 30 m s=                       (5) 

If a measured number is so large or small that it calls for scientific notation (the use of the form 
83 10  instead of 300,000,000 m s , for example), then it is simpler and clearer to put the 

answer and uncertainty in the same form. For example,  

( ) 19measured charge 1.61 0.05 10−=    Coulomb               (6) 

is much easier to read and understand than in the form 

19 21measured charge 1.61 10 5 10− −=     Coulomb             (7) 

(1) Fractional Uncertainty 

If x  is measured in the standard form bestx x , the fractional uncertainty in x  

is 

best

fractional uncertainty 
x

x


=                   (8) 

and the percent uncertainty is just the fractional uncertainty expressed in percentage (that 

is, multiplied by 100%). For example, the result (3.5) can be rewritten as 

measured speed 6052 m s  0.0050=                 (9) 

or  

measured speed 6050 m s  0.50%=                (10) 

Note that bestx x  is a dimensionless quantity. As you relate fractional uncertainty with 

the idea of significant figures, you should understand why no more than two significant 

figures should be stated for the uncertainties. 

(2) Propagation of Uncertainty 

Physical quantities usually cannot be directly measured. For example, to find the 

momentum p  of a car, we should first measure its mass m  and its velocity v , and then 

use these values to calculate its momentum. To do so, we have to estimate the uncertainties 

 
1 If the digit next to the last siginificant figure is 0, one should instead just round it down. 
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in the directly-measured quantities and then determine how these uncertainties ( ),  m v   

“propagate” through the calculations to produce an uncertainty in the final answer ( )p . 

Here, we would only give the rules of propagation of uncertainties instead of providing a 

rigorous proof due to the complexity. For now, let’s focus on how to deal with the 

propagation of uncertainty. 

Suppose that two independent quantities  and x y  are measured with uncertainties 

,x y  . We have uncertainty in sum and difference to be  

 ( ) ( ) ( )
2 2

x y x y   = +                     (11) 

in product and quotient to be 

( ) ( )
22

x y xy x y

xy x yx y

     
= = +   

   
                (12) 

  and in powers to be 

    
( )y

y

x x
y

xx

 
=                           (13) 

In general, for n  independent quantities, the uncertainty is the quadratic sum 

( ) ( ) ( )
22

1 1n nx x x x  + + = + +               (14) 

1
2 22 2

1 1 1

1 11

1

n

n n n

n nn

n

x x

y y x yx y

x x y yx x

y y


  

  
 

          = + + + + +      
        

 

      (15) 

(3) Classification of Uncertainty 

While facing repeated observations with different results, it is natural to ask ourselves 

which value is the most representative and what confidence level can we have in that value. 

The method we use is to introduce the best estimate as well as the uncertainty to state the 

result. For n  independent and identical2 measurements iX , the best estimate is usually 

taken as the arithmetic mean or average.  

best
1

1 n

i
i

X X X
n

=

= =                         (16) 

Note that 1 2, ,......, nX X X  here are random variables, which means that different trials 

give different results for 1 2, ,......, nX X X . In other words, different people would obtain 

different results for 1 2, ,......, nX X X  when they measure the same quantity n  times. As 

 
2 We believe that physics experiments are reproducible; therefore, once the number of measurements is large enough, 

we can argue that other sets of measurement would give the same result as the first set suggests. 
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for the uncertainties, according to the International Standard Organization (ISO), there are 

two classifications: type A and type B.  

(1) Type A (standard) uncertainty Au  is defined to be the standard deviation of 

the mean of the measured quantity. It statistically evaluates the random effects that 

make the difference in iX . The experimental variance of the observations is 

( )
22

1

1

1

n

X i
i

X X
n


=

= −
−
                    (17) 

This variance and its positive square root X , termed the experimental standard 

deviation, characterize the dispersion of data about the mean X . Now, consider 

another random variable XA , the average of iX .  

( )1 2
1

...... nX X X XA
n

+ + +=                   (18) 

Therefore, the best estimate of the variance of the mean XA  is  

( ) ( ) ( )
22 2 2

AXX A X XVar A E A E A u= = −               (19) 

where  E y  stands for the expectation value for the quantity y , and the type A 

uncertainty is defined to be the standard deviation of the mean of the measurements. 

Since the measurements independent and identical, one has 

1 2

2 2 2 2
1 2

2

1 2 1 2

......

......

n

n

X X X X

X X X X

X X X X X

 = = = 



= = = 

 =  =

                   (20) 

Therefore, Type A standard uncertainty ( )Au X  is  

( ) ( ) 1X X
A Xu X Var A

n n

 
= = =                  (21) 

Note that in eq(17), the experimental standard deviation is defined by the factor 1n−  

instead of n  due to Bessel correction. Also, as expected, the best estimate of the 

variance of the mean ( )Au X  approaches 0 , as long as the number of trials n  is 

large enough, when the random effect would on average not influence the 

measurements at all. 

It’s worthnoting that the general definition for the best estimate is not X  but 

XA  since while talking about the measurements, we are discussing the reproducible 

and therefore independent and identical measurements, instead of just one set of the 

measurements that you do. Therefore, that’s why Type A uncertainty is said to be the 

standard deviation of the mean of the measurements. However here, since XA X= , 

we simply use X  to represent the best estimate of the measurements. 
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(2) Type B (standard) uncertainty is evaluated by non-statistical information such 

as instrument characteristics considering the systematic effects. The pool of 

information may include previous measurement data, manufacturer’s specifications, 

data provided in calibration, uncertainties assigned to reference data taken from 

handbooks, or simply the experience. 

For example, a calibration certificate states that the mass of a stainless steel mass 

standard sm  of nominal value one kilogram is 1000.000325 g and that “the 

uncertainty of this value is 240 g  at the three standard deviation level.” The 

standard uncertainty of the mass standard is then simply  

( )
240 

80 
3

B s
g

u m g


= =                    (22) 

On the other hand, if the uncertainty is not provided by the manufacturer, it can 

be roughly calculated. Assume it is equally possible for the measurand value X  to 

lie anywhere within the interval 2X a−  to 2X a+ , where a  is the minumum 

scale value of the instrument. That is, we are assuming a rectangular distribution of 

possible values for the characterization. The best estimate and the variance of the 

measurements become 

( ) ( )

  ( )

2

2

2

2

2
2 22 2 2

1

1

12

X a

X a

X a

X a
B

E X P X XdX XdX X
a

a
Var x X X X dX X u X

a

+

−

+

−


=  = =



 = − = − = 


 



      (24) 

   Therefore, the type B uncertainty is 

( )
2 3

B
a

u X =                           (25) 

Last but not least, after obtaining Type A uncertainty and Type B uncertainty, the 

combined standard uncertainty ( )Cu X is therefore determined by 

( ) ( ) ( )2 2
C A Bu X u X u X X= + =                (26) 

  where X  is called the best estimate of the uncertainty in the measurement. 

Example: Measurement of the volume of a cube 

To obtain the volume, the side length of a cube should be measured first, and the results 

kL  are shown in Table1 with the minimum scale value of the ruler to be 1 mm . 

Table1. measured values of the side length  

No 1 2 3 4 5 6 7 8 

Value(mm) 22.1 22.0 21.9 21.8 21.8 21.7 21.9 22.0 

No 9 10 11 12 13 14 15 16 

Value(mm) 21.9 22.0 21.9 22.1 21.9 21.8 22.0 21.8 
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 (1) Best estimate for the side length: (eq. 16) 

best 21.9125  (mm)L L= =  

 (2) Type A standard uncertainty: (eq. 21) 

( ) 0.0286... (mm)
16

L
Au L


= =  

 (3) Type B standard uncertainty: (eq. 25) 

( )
1 ( )

0.2886...  (mm)
2 3

B
mm

u L = =  

 (4) Combined standard uncertainty: (eq. 26) 

( ) ( ) ( ) ( ) ( )2 22 2 0.0286... 0.2886... 0.29 (mm)C A Bu L u L u L L= + = = +   

 (5) Measured value of the side length: 

( )best(Measured side length ) 21.91 0.29 (mm)CL L L L u L= + = + =   

 (6) Best estimate for the volume of the cube: 

3 3 3
best 21.91 10517.85... (mm )V L= = =  

 (7) Best estimate for the uncertainty of the volume: (eq. 13) 

( ) ( )

3

3
best

3 3

3 0.29
3 0.0397...

21.91

0.039... 417.6...  (mm ) 420 (mm )10517.85...

V L L

V LL

V

  




= = = =

 =  = 

 

(8) Calculated volume of the cubic block: 

3
best 10520 420 (mm )V V V=     

Note that not until you want to state the result of the calculation would you need to round or 

round up (down) the number. For example, although the Type A uncertainty for the length stated 

above is ( ) 0.0286... (mm)Au L  , if you want to specifically state the Type A uncertainty of 

the length, then you should state as ( ) 0.029 (mm)Au L  . The statement above is just used to 

show the steps of calculation clearly. 

(2) Statistical Analysis of the Random Effect 

To get a better feel for the difference between random and systematic uncertainties, consider 

the analogy shown in Fig. 1. Here the “experiment” is a series of shots fired at a target; accurate 

“measurements” are shots that arrive close to the center. Random effect is caused by anything 

that makes the shots arrive at randomly different points, such as fluctuating atmospheric 

conditions between the marksman and the target. Systematic effect arises if anything makes the 

shots arrive off-center in one “systematic” direction, such as misaligned gun sights.  
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Although Fig. 1 is an excellent illustration of the random effect and the systematic effect, 

it is, however, misleading in one important respect. Because each of the two pictures shows 

the position of the target, we can tell at a glance whether a particular shot was accurate or not. 

Nonetheless, in real-life experiments, we do NOT know the true value (center) of the 

measurand; that is, we can easily assess the random effect but get NO guidance concerning 

the systematic effect in most real experiments. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Random and systematic effect in target practice. The random effect is larger in (a), 

compared to (b), and the systematic effect is larger in (b), compared to (a). 

Therefore, systematic uncertainties are usually hard to evaluate and even to detect. The 

experienced scientist has to learn to anticipate the possible sources of systematic effect and to 

make sure that all systematic effect is much less than the required precision. Also, the reference 

value or the most probable value of the best estimate for the measurand relies on differently and 

independently repeated measurements under the same condition.  

For measurements with random effect, the distribution is called the normal, or Gaussian 

distribution, also referred to as the “bell curve.” Mathematically, it is a two-parameter function: 

( )
2

2

1
( ) exp

2
2

X X
f X

 


 
− − =
 
 

                     (3.21) 

which describes the distribution of the data about the mean, X , with standard deviation  . 

Many real-life data sets have bell-shaped distribution and are approximately symmetric about 

the mean for the random effect.  

Fig. 2(a) shows about 68%, 95%, 99,7% of the data lie within 1, 2, 3 standard deviations of 

the mean, or the interval  to X X − + , 2  to 2X X − + , 3  to 3X X − + , 

respectively. Fig. 2(b) shows the functional form of three normalized Gaussian distributions, 

each with standard deviations of 1 2,  1,  and 2 , respectively. Each curve has its peak centered 

on the mean, is symmetric about the value, and has an area under the curves equal to 1.  

Recall the claim at the beginning of this section. We can now tell that if the same quantity 

X  is measured many times under the same condition, and if all the sources of uncertainty are 

small and random, then the results will be distributed nearly around the average under the bell-

shaped curve. In particular, approximately 68% of your results will fall within a distance X  

(a)         (b) 
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on either side of X ; that is, 68% of your measurements will fall in the range XX  . In other 

words, if you make a single measurement under the same condition, the probability is 68% that 

your result will be within the interval  to X X − + . Thus, we can adopt X  to mean 

exactly what we have been calling “uncertainty”. With this choice, you can be 68% confident 

the measurement is within X  of the best estimate. 

 

 

 

    

 

 

 

 

 

Fig. 2. Functional forms of the normalized normal distributions. (a) The percentage of data 

within the interval  to X X − + , 2  to 2X X − + , 3  to 3X X − + , respectively. (b) 

Gaussian distributions, each with standard deviations of 1 2,  1,  and 2 , respectively, and an 

area under each curve equal to 1. 

C. Apparatus 

     

vernier caliper micrometer caliper straight ruler electric balance precision balance 

D. Procedures 

1. Pre-lab assignments (hand in before the lab) 

(1) Read the instructions for use of the vernier caliper and the micrometer caliper to learn 

how to use them to measure the quantities  

(2) Make a flowchart of this lab and answer the questions below. 

(3) Rewrite each of the following measurements in its most appropriate form 

 (i) 8.123456 0.0312 m sv =   

 (ii) 
43.1234 10 2 mx =    

 (iii) 
7 95.6789 10 3 10  kgm − −=     

(4) In an experiment with a simple pendulum, a student decides to check whether the 

period T  is independent of the amplitude A  (defined as the largest angle that the 

(a)         (b) 
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pendulum makes with the vertical during its oscillations). He obtains the results shown 

in the Table below.  

(i) Draw a graph of T  against A , including their uncertainties. Does the period 

depend on the amplitude?  

(ii) If the measured period T   has an uncertainty of 0.3 s  , discuss how the 

conclusion of part (i) would be affected. 

Amplitude  (deg)A  Period  (s)T  

5 2  1.932 0.005  

17 2  1.94 0.01  

25 2  1.96 0.01  

40 2  2.01 0.01  

53 2  2.04 0.01  

67 2  2.12 0.02  

  (5) With eq(18)~(20), prove eq(21). 

2. In-lab activities 

 (1) Calibrate the instruments to avoid the zero-point errors 

 (2) Obtain the densities of objects assigned by the lab instructor. 

(i) Use the appararus to independently measure the quantities you need while 

calculating the densities of the given objects and record the data in the Excel 

tables. Twenty independent measurements are needed for each quantity. 

(ii) Calculate the means, the standard deviations, and the standard deviations of the 

means of the quantities you measured. Report them in the standard forms.  

(iii) Obtain the densities of the objects and state the results in the standard forms.  

(iv) Use Archimede’s principle to obtain the densities of the objects and report the 

results in the standard forms 

   (v) Compare the results obtained by the two methods. 

3. Post-lab report 

(1) Recopy and organize your data from the in-lab tables in a neat and more readable form 

(2) Analyze the data you obtained in the lab and answer the given questions 

E. Questions 

1. While measuring the height and the diameter of a cylinder metal rod, why should you do 

the procedures at different points of the rod and from different directions each time? 

2. Suppose you are asked to determine the area of a rectangular object and you measure its 

length and its width. After repeating this procedure you obtain N sets of data. Which of the 

following two methods is correct for obtaining the area: (a) Take the average of length and 

width first and then multiply length by width; (b) Multiply the length by width for each 

data in each data set first and then take the average. Explain.  

3. Is it possible for you to design a vernier caliper with its accuracy to be 0.02 mm ? Explain. 
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4. In the appendix, you may find two different data sets, which shows the counting of 

radioactive events using a Geiger counter.  

(1) Find their average, and standard deviation. Plot a histogram to show their distribution. 

(2) Find the average and standard deviation of the squared data. 

(3) Compare the fractional uncertainties of the original data set and their squared. Explain 

what do you observe from the difference. 

(4) (Optional) Distribution of this data can be described by a famous Poisson distribution. 

Give a short introduction about the distribution and explain the result. Try to fit the 

data by Poisson distribution and explain what makes this different from the normal 

distribution. 

5. Suppose that due to the previous experiment, a PVC circular pipe provided by the lab is 

compressed into an ellipse, with a semi-major axis length a  and semi-minor length b . 

(1) Use a , b , and ( ) 2a b+  as the radii of three circles to calculate their individual 

areas. Compare the results with the ellipse area. Which one has the smallest difference? 

(2) In reality, how should we experiment to get the least difference between the measured 

value and its area? 
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Appendix: Data set 1 of radioactive events 

134 104 109 99 132 108 94 115 115 109 99 104 97 124 112 122 127 134 104 109 

109 101 110 106 106 116 121 134 125 103 116 120 115 123 113 89 112 109 101 110 

129 101 116 102 96 116 128 88 121 105 120 104 124 94 137 108 122 129 101 116 

114 115 98 113 106 125 115 97 116 129 117 106 125 113 110 123 120 114 115 98 

131 114 116 118 118 96 113 110 113 124 119 115 106 122 109 103 118 131 114 116 

124 113 126 122 100 115 97 133 96 105 119 98 136 100 126 113 104 124 113 126 

99 111 100 119 114 111 115 106 105 101 119 89 118 113 106 111 141 99 111 100 

114 118 107 110 126 119 131 105 124 82 116 108 116 108 114 110 119 114 118 107 

120 129 118 116 135 109 99 142 122 131 114 91 99 135 118 157 102 120 129 118 

129 126 125 110 120 130 115 108 126 96 126 111 107 111 125 112 107 129 126 125 

121 115 106 118 122 111 111 100 126 108 97 122 114 112 113 133 116 121 115 106 

106 98 123 92 93 103 150 108 130 130 106 120 111 129 132 104 113 106 98 123 

99 111 116 130 138 129 135 152 127 128 91 121 117 115 112 112 103 99 111 116 

121 102 131 114 120 129 111 130 111 139 122 143 120 113 118 99 104 121 102 131 

98 106 129 108 110 131 112 118 116 104 98 118 124 100 113 116 117 98 106 129 

112 118 123 104 111 111 123 129 109 95 117 140 102 106 107 116 131 112 118 123 

124 111 117 115 121 131 132 111 114 106 121 117 127 98 128 132 132 124 111 117 

120 141 122 109 116 128 103 144 111 121 124 112 131 115 111 88 94 120 141 122 

100 106 115 109 101 120 121 99 121 124 117 101 107 124 116 128 128 100 106 115 

126 105 113 144 120 124 131 98 100 124 122 118 125 117 125 112 132 126 105 113 

118 103 113 113 116 109 112 127 103 105 116 121 102 111 108 105 124 118 103 113 

 

Data set 2 
67 83 60 65 73 61 69 61 87 69 
104 74 61 64 75 58 62 66 78 68 
60 83 72 62 76 71 67 55 61 66 
70 73 65 44 61 55 66 49 65 68 
49 77 73 51 63 62 62 65 54 86 
63 68 63 60 74 73 54 58 71 62 
67 78 71 64 70 51 77 106 74 67 
73 113 68 106 54 64 62 54 78 70 
59 85 70 68 83 110 74 78 93 64 
101 71 88 61 63 66 68 53 92 72 
64 94 70 76 53 58 90 59 104 71 
55 71 75 67 72 62 94 65 96 65 
103 72 102 60 99 80 87 64 56 69 
72 66 84 65 104 61 101 59 65 75 
71 95 59 68 85 61 58 71 61 65 
96 93 75 87 102 98 63 73 88 103 
56 91 76 67 63 73 69 86 68 96 
69 64 90 52 57 87 57 84 67 97 
61 55 90 84 73 71 75 78 78 98 
71 69 62 78 53 80 69 82 115 84 
84 61 61 75 68 70 76 95 92 68 
106 75 50 91 67 73 87 76 60 69 
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76 52 67 52 61 93 51 65 82 53 
81 64 53 64 69 61 65 94 66 60 
72 68 47 104 53 78 84 65 64 60 
74 52 68 68 61 85 63 70 97 70 
83 65 64 66 72 79 76 62 75 65 
82 69 59 104 72 60 100 101 52 64 
76 64 55 71 58 64 64 85 68 81 
91 70 66 87 107 102 59 88 68 55 
73 63 57 67 63 101 58 61 76 68 
85 103 74 113 69 86 68 63 98 80 
94 54 62 87 64 77 83 63 79 66 
112 55 61 93 69 77 76 58 79 71 
114 61 70 64 89 52 72 47 82 59 
99 76 62 111 79 64 68 60 66 76 

 


